Internal friction controls the speed of protein folding from a compact configuration.

نویسندگان

  • Suzette A Pabit
  • Heinrich Roder
  • Stephen J Hagen
چکیده

Several studies have found millisecond protein folding reactions to be controlled by the viscosity of the solvent: Reducing the viscosity allows folding to accelerate. In the limit of very low solvent viscosity, however, one expects a different behavior. Internal interactions, occurring within the solvent-excluded interior of a compact molecule, should impose a solvent-independent upper limit to folding speed once the bulk diffusional motions become sufficiently rapid. Why has this not been observed? We have studied the effect of solvent viscosity on the folding of cytochrome c from a highly compact, late-stage intermediate configuration. Although the folding rate accelerates as the viscosity declines, it tends toward a finite limiting value approximately 10(5) s(-1) as the viscosity tends toward zero. This limiting rate is independent of the cosolutes used to adjust solvent friction. Therefore, interactions within the interior of a compact denatured polypeptide can limit the folding rate, but the limiting time scale is very fast. It is only observable when the solvent-controlled stages of folding are exceedingly rapid or else absent. Interestingly, we find a very strong temperature dependence in these "internal friction"-controlled dynamics, indicating a large energy scale for the interactions that govern reconfiguration within compact, near-native states of a protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffusional limits to the speed of protein folding: fact or friction?

Proteins fold by diffusional motion, driven by molecular collisions but limited by frictional drag. We then expect that the timescale of simple diffusional motions of the polypeptide chain defines the minimum time, or the maximum rate, for folding phenomena in general. However, such ‘speed limits’ are very rapid. They far exceed the rate of folding that is observed in even the fastestfolding sm...

متن کامل

Folding of the four-helix bundle FF domain from a compact on-pathway intermediate state is governed predominantly by water motion.

Friction plays a critical role in protein folding. Frictional forces originating from random solvent and protein fluctuations both retard motion along the folding pathway and activate protein molecules to cross free energy barriers. Studies of friction thus may provide insights into the driving forces underlying protein conformational dynamics. However, the molecular origin of friction in prote...

متن کامل

Dependence of Internal Friction on Folding Mechanism

An outstanding challenge in protein folding is understanding the origin of "internal friction" in folding dynamics, experimentally identified from the dependence of folding rates on solvent viscosity. A possible origin suggested by simulation is the crossing of local torsion barriers. However, it was unclear why internal friction varied from protein to protein or for different folding barriers ...

متن کامل

Measuring internal friction of an ultrafast-folding protein.

Nanosecond laser T-jump was used to measure the viscosity dependence of the folding kinetics of the villin subdomain under conditions where the viscogen has no effect on its equilibrium properties. The dependence of the unfolding/refolding relaxation time on solvent viscosity indicates a major contribution to the dynamics from internal friction. The internal friction increases with increasing t...

متن کامل

Internal friction in the ultrafast folding of the tryptophan cage

Protein folding is a diffusional process, and the speed of folding is controlled by the frictional forces that act on the polypeptide chain. Several previous studies have suggested that the bulk viscosity of the solvent is the only important source of friction in folding reactions. By contrast, our studies of the folding dynamics of the Tryptophan Cage, a small, ultrafast-folding protein, show ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 43 39  شماره 

صفحات  -

تاریخ انتشار 2004